

SELECTED HIGHLIGHTS FROM THE PHENIX EXPERIMENT

Ming Liu, (for Hubert van Hecke) for the PHENIX collaboration

Selected highlights from PHENIX

- ψ/ψ' in pp and pA
- Open heavy flavor D, B
- 3. Flow in Small systems
- 4. Thermal Photons

New results, and some unresolved older measurements

NATIONAL LABORATORY

The RHIC accelerator complex

RHIC has collided many different systems at many different energies

The PHENIX Detector

Central Electrons

- $|\eta| < 0.35$
- $\Delta \phi = \pi$
- Tracking: DC, PC, VTX
- eID: RICH, EMcal

Forward Muons

- $-1.2 < |\eta| < 2.2$
- $\Delta \varphi = 2\pi$
- ~10λ absorber
- Tracking: wire chamber
- MuID: 5 layers of steel and Larocci tube plane
- FVTX

$J\psi/\psi' \rightarrow \mu^+\mu^-$

Heavy quarks

- Are produced only in initialphase, hard processes
- Production is calculable in perturbative QCD

- cc̄ becomes Jψ, ψ' after formation time, outside nucleus
- Binding energies are very different (640, 50 MeV)
- Differences between Jψ, ψ' reflect final state effects

Detectors used:

- Forward Vertex Detector
- Muon Tracker
- Muon Identifier

$Jψ/ψ'→μ^+μ^-$ in p+p

NEW

Detectors used:

μ⁺μ⁻ mass (GeV/c²)

- Muon Tracker
- Muon Identifier
- Forward Vertex Tracker

$J\psi/\psi' \rightarrow \mu^+\mu^-$ in p+p

Ratio in pp matches world data

$Jψ/ψ'→μ^+μ^-$ in p+p

2

3

5

p_r (GeV/c)

p_T spectrum
Consistent with
world pp, pp data at
lower and higher
energies

$J\psi/\psi'\rightarrow \mu^+\mu^-$ in pA

 $\Psi(1s)$, $\Psi(2)$ affected the same in the (low-density) p-going direction.

Suppression by ~2 in the Au,Al-going direction can be attributed to interactions with comovers.

However, densities in A-going direction in Al, Au are not the same, but suppression is. Need theory.

$B \rightarrow J/\psi$

 J/ψ produced from B decay are sensitive to different initial state and final state effects on B production than J/ψ produced directly in heavy ion collisions.

Measurement of B->J/ ψ helps constrain gluon PDFs in different regions of x and Q² in p+p collisions

B-)J/ψ in pp and CuAu

B→J/Psi fraction was measured from precise measurement of DCA_R in

- pp 510 GeV
- Cu+Au 200 GeV

B-J/ψ in pp 510 GeV

Determine and unfold all contributions

Run12 510 p+p B to J/ψ fraction

Consistent with measurements at higher energies

B-J/ψ in Cu+Au 200 GeV

Determine and unfold all contributions

Convert the B->J/Psi fraction to R_{AA} assuming that B->J/Psi fraction in p+p is 0.1

$$R_{AA}^{B \to J/\psi} = \frac{F_{B \to j/\psi}^{AA}}{F_{B \to j/\psi}^{pp}} R_{AA}^{J/\psi} = \frac{F_{B \to j/\psi}^{AA}}{0.1} R_{AA}^{J/\psi}$$

D/B separation using secondary vertices

D, B produced in initial hard processes, preserved throughout

NATIONAL LABORATORY

VTX, central rapidity, using electrons

R_{AA} for D,B \rightarrow electrons

Phys. Rev. C93, 034904 (2016)

Low p_T: B less suppressed than D

High p_T: B and D similarly suppressed

NATIONAL LABORATORY

~20x more data coming

Jets in Cu+Au and d+Au

Phys. Rev. Lett. 116, 122301 (2016)

- No p_T dependence
- Consistent with NLO, nuclear effects are small

Clear centrality dependence

Surprise! We had seen pT dependence in dAu

Direct photons

Thermal photon spectra

- Thermal photon spectra are obtained by subtracting hard photons from all direct photon spectra
 - Hard photon contribution is estimated from p+p times Ncoll
- Fitting to low p_T region gives T~240MeV/c, almost independent of centrality
- The Slope parameter reflects the convolution of the instantaneous rates with the time-dependent temperature.
 - One has to assume time profile to obtain the temperature at given time.

Direct photons in Au+Au

- Yield is large (x3 of models)
- v2 is large (x2 of models)

No good explanation yet. Many more photons need to come from late stages of the collision, when flow has developed

Collective effects in small systems

How small can a system be and still show collective effects?

-> Exploit RHIC's versatility:

Strong flow at RHIC top HI energy. Sensitive to early system properties

AMPT: arXiv:1501.06880 SONIC: arXiv:1502.04745 IP+Hydro:arXiv:1407:7557

Smaller (dAu) and smaller (lower energy)

v₃ (triangular flow) develops slower, and may not have enough time in smaller, shorter-lived systems -> watch dAu energy scan (2016) for v₂, v₃ results

More to come...

After 25 years, and 16 runs, PHENIX has completed data taking in 6/2016

However, the collaboration remains very much active

Expect 15-20 papers per year for the next 3-5 years

Stay tuned!

Back up

